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The effect of the displacement current on the magnetic field propagation into plasmas in the
form of a whistler wave is studied. For times between the electron and the ion cyclotron
periods and if the plasma is tenuous so that the electron plasma frequency is smaller than the
cyclotron frequency, the magnetic field is shown to be governed by the Telegraph equation
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early times the magnetic field is shown to propagate as a left-polarized wave with the light
velocity. At a later time the magnetic field propagates as the dispersive whistler wave and is
governed by the diffusion equation with a complex coefficient [ Fruchtman and Maron, Phys.
Fluids B 3, 1546 (1991) ]. As expected, the front of the wave keeps propagating with the finite
velocity of light. The effect of collisional resistivity is also considered.

I. INTRODUCTION

The magnetic field propagation in magnetized plasmas
has been studied theoretically and experimentally in the con-
text of space plasmas as in laboratory plasmas. The propaga-
tion of the magnetic field in processes for which the time
scales are fast is also of wide interest and has been studied in
laboratory plasmas, as in an afterglow plasma,' and in some
pulsed power devices such as the magnetically insulated ion
diode** and the plasma opening switch.*> The time scale in
such cases is between the electron cyclotron period and the
ion cyclotron period. If the plasma collisionality is small,
then for these time scales, the magnetic field evolution is
highly governed by the Hall field.

In such short time scales, which are characterized by
frequencies such that w> w,,;, where w,, is the ion cyclotron
frequency, the electron motion becomes more important
than the ion motion, and the ion motion can be neglected. In
another paper where the ion motion is included,® we study
the transition from field propagation to plasma pushing by
the magnetic field, and we show that the neglect of the ion
motion for o> w,,, is a consistent assumption.

The electron inertia can be neglected as long as w € w,,,
where w,, is the electron cyclotron frequency. In such cases,
the Hall term accounts for the electron motion. For w =w,,
more complicated models should be considered. The Hall
term has been already vastly introduced in the context of
different plasma behaviors’** and in particular also in the
context of propagation of magnetic field.%!1®

Inarecent paper'® it is shown that when the Hall term is
introduced into the equations, the magnetic field propaga-
tion is enhanced in a dramatic way provided that there exists
a strong magnetic field in the direction of propagation. In
this case the propagation of a fast rising field is characterized
by the whistler velocity rather than by the Alfvén velocity.
Also, for large enough Hall term in comparison with the
collisional term, the process is much faster than what a pure-
ly diffusive type process would be. The one-dimensional
magnetic field evolution, when governed simultaneously by
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both whistler wave propagation and collisional diffusion,
was shown to be described by a diffusion equation with a
complex diffusion coefficient, where its real part results from
the collisional resistivity and the imaginary part results from
the Hall term. The displacement current has been neglected
in this analysis. The purpose of the present paper is to exam-
ine how the whistler-dominated magnetic field evolution is
modified by the inclusion of the displacement current.

Our model, asin Refs. 6 and 16, consists of a one-dimen-
sional plasma slab with perpendicular magnetic field of in-
tensity B,. A parallel magnetic field is switched on at time
t =0 on one of the slab faces, and it propagates into the
plasma as a whistler wave, governed by the Hall term. We
focus on the effect of the displacement current which was
previously neglected.

Inorder to be able to neglect the displacement current in
the Hall-field-dominated evolution, we previously assumed
that the time scales should be such that w<wf,/wce, where
o, is the plasma frequency. In the present paper we relax this
assumption but still restrict ourselves to time scales such
that w_, >®. For such time scales, the electron inertia can
still be neglected, but the displacement current has to be
included. Such a regime exists for tenuous plasmas in which
WO > wpe .

We make the further assumption that the parallel fields
are smaller than the perpendicular uniform field B,. The
problem is thus reduced to the linear one-dimensional evolu-
tion of the magnetic field along a background magnetic field
in a cold uniform plasma. Under the combined effects of the
Hall field, the collisional resistivity and the displacement
current, the magnetic field evolution is shown to be governed
by the Telegraph equation with complex coefficients. When
the displacement current is neglected, the Telegraph equa-
tion is reduced to our previous diffusion equation with a
complex coefficient. We study the propagation into the plas-
ma of a magnetic field that is switched on with an infinitely
fast rise time at the plasma boundary. We derive analytical
solutions in this case for both semi-infinite and finite plasma
slab.
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The propagation into the plasma of fast-rising currents,
as well as that of the associated magnetic field, in the form of
whistler wave propagation, has been recently observed ex-
perimentally in an afterglow plasma.! Although the geome-
try in that experiment was cylindrical rather than a slab ge-
ometry, as it is in our model, the currents were observed to
propagate by dispersive oscillatory whistler waves governed
by the electron motion, similar to the description in the pres-
ent model. The typical velocity of the propagation was in-
deed observed to be the whistler wave velocity rather than
the Alfvén velocity.

In Sec. II the model is presented and the governing
equation for the parallel propagating field is derived. Also,
typical time and space scales are calculated. In Sec. III an
analytical solution is shown for the semi-infinite slab, The
solution is compared to the solution that does not consider
the displacement current, its development in time is shown
and the role of the collisional resistivity is also shown. In Sec.
IV a solution for finite boundaries at the perpendicular x
direction is presented. Finally, a resumé is given in Sec. V.

Il. THE MODEL

We assume that the process is so fast that the ions are
immobile and the current as a result is determined by the
electron motion only. On the other hand, we assume that the
process is slow enough to allow the neglect of the electron
inertia. The characteristic time scale is therefore between the
electron and the ion cyclotron periods. We further assume
that the pressure gradients are small. These assumptions are
expressed in the following form of Ohm’s law,

E=75J + cJXB, (H

where E and B are the electric and magnetic fields, J is the
current, 7 is the collisional resistivity, € = 1/n,ec and n, is
the electron density.

The other governing equations are Faraday’s law and
Ampere’s law for the electric and magnetic fields, and the
continuity equation for o the charge density:

(1/¢)d,B= — VXE, - (2)

(1/¢)(3,E + 47wJ) = VXB, (3)

8,0+ V-J=0. (4)
Equations (1)—-(4) and the relation

n, =y — O, (3)

where n, is the constant-in-time ion density, comprise the
governing equations for E, B, J, and o.

We consider an infinitely long plasma slab, with its nor-
mal at the x direction. The plasma is magnetized with a uni-
form magnetic field B, %. A constant parallel magnetic field
B, is switched on the front face of the slab (a y-z plane), at a
time ¢ = 0. We assume that all quantities depend only on x.

When the displacement current is neglected, incom-
pressibility is a property of the electron flow. When the dis-
placement current is important, the electron flow is incom-
pressible only if we consider the linearized one-dimensional
case, B,, B, <B,_, on which we focus from now on. More
exactly, B,, B, € B, = E, =0 from this follows J, = 0 and
n,=n, =n=n, (constant and uniform, also charge neu-
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trality is valid). Then Eq. (4) is satisfied trivially.
Defining T = ct, we obtain the equations for the y and z
components:

— 9B, = (Byc/47) (3% — 3%) [€B, — (7/B,)B,], (6)
IrB, = (B,c/4m) (35 — %) [eB, — (0/B)B,].  (T)

By assuming B,, B, of the form B,, = B, e+ (/9T and
77 = G, and by a substitution into Egs. (6) and (7), we find
the dispersion relation. Because the equations are of fourth
order in T, we get two branches of positive frequencies:

i, 1426k %*(4m)’BL F 1 + 46’k *c*(47) B2
&2 ec*(4m)°B?2 '
(8)
This is the dispersion relation for the case ., > w>0}/0,,,
for collisionless cold plasma electron waves. Generally there
are three branches of electron waves with positive frequen-
cies for a cold plasma of a low density where w,, €®,,. The
whistler wave is the slower mode, and the two other modes
are the left- and the right-polarized modes.!” In our model,
however, which corresponds to time scales for which the
electron inertia is neglected (w <w,,) the fastest mode, the
right-polarized mode, does not appear. The presence of the
two different frequencies here, in comparison to the previous
work'® that had only the whistler branch as a solution, is the
reason for the basic differences between the solutions.

Defining B=B, + iB,, Egs. (6) and (7) can be rewrit-
ten as

drB = (Byc/4m)| —ei + (7/B,) (3% —3%)B. (9)
This is the Telegraph equation for complex B with complex
coeflicients.

The Telegraph equation describes magnetic field propa-
gation that is governed by a superposition of whistler waves
and left-polarized waves. When the time scale is long,
w<w§ /o, the dispersive whistler wave is dominant, When
the time scale is shorter, » , >®>0?/w,,, the dominant
wave is the lefi-polarized wave, which becomes nondisper-
sive for o> w?/w,,.

The Telegraph equation is an hyperbolic equation,
where ¢, the light velocity in vacuum, is the velocity of pulse
propagation. As expected, this finite propagation velocity
results from the inclusion of the displacement current, and
the associated left-polarized wave, in our model. The neglect
of the displacement current reduces the Telegraph equation
to the parabolic diffusion equation (with a complex coeffi-
cient), which describes whistler wave propagation.!® The
Telegraph equation with real coefficients describes propa-
gating waves in a lossy medium. The value of the parameter
ne determines whether the wave is diffusive (7o <1) or a
nondispersive light wave (o> 1). In our case, the Tele-
graph equation with complex coefficients describes disper-
sive propagating waves where the analogous parameter
w0/}, determines whether the wave is dispersive
(wq.@/] <1) or a nondispersive light wave (w, w/w2 > 1).
The quantity w, . /w? = B, /nec is called the Hall resistivity,
because of the analogy to 7 in the Telegraph equation.
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Scaling analysis. Equation (9) can be rewritten in a di-
mensionless form.

Definingb=B/B,,T'=
equation becomes

8,.b=[ —i+ (1/€B,)](% — 32.)b. (10)

From this equation it can be seen that we have left only one
physical parameter, which is mainly the ratio between the
resistivities, k=7/€B, . If now we redefine T"=8T’, and

47T /eB,c,x' =4wx/ceB,, the

we obtain the equation
b=(—i+K)(d2% —p32%.)b. (11)

We see that for 50, the equation tends to a diffusion, or a

Schrodinger equation, depending on the values of «. This

diffusion equation is exactly the equation given in the case
when the displacement current is not considered.'®

In terms of T’ and x’, we see that for f—0 and

= O(1/B) - « and x'*/T' = 0(B°), the equation tends

iAd tha Aicel ey oy
tc the equation which does not consider the displacement

current. Finally, we see that the conditions for tending to the
previous solutions, which do not consider the displacement
current, in terms of the unnormalized ¢ and x and orders of

B, are

(a) t/eB, =O0(1/B) - «;

(b) x2/c%€B, t~0(B°).

(Notice that this is the condition for the whistler waves to
become dispersive, as mentioned before. )

From Eq. (10) we see that rescaling x’, 7'’ together with
respect to a parameter ', where 8’ -0, in a way that both x’
and 7' have the same first-order dependence on 3, then for
small x" and T’ both of order 5’ —0 the equation is a wave
equation. In terms of x, #, the equation becomes a wave equa-
tion when

(c) t/eB, =0O(B'};

(d) x/ct=0(B").

We remark that the wave solution should not depend on «.

Let us emphasize that this is true in general only when it
is satisfied that none of the derivatives of the solution is sin-
gular and for both 8 and B’ strictly tending to zero. The
behavior near the front, therefore, cannot be predicted by
these scalings, and it is studied separately in the following
section.

In the next sections we find explicitly the solutions, and
we will verify the conclusions of these scalings.

IN. ANALYTICAL SOLUTION FOR A SEMI-INFINITE
SLAB

We consider a plasma slab that is semi-infinite in the x
direction. The magnetic field is applied at one of its faces,
defined as x = 0. The magnetic field is applied at "= 0 and
kept constant. The boundary conditions are then

B(0,x) =0, B(T,0)=B,, Jd+B(Ox)=
We define
a={(B,c/4w)[ —ie + (3/B,)]}.

Then, applying a Laplace transform on Eq. (9), ie,
fx,s)=L[B(x,t)], we obtain

377 Phys. Fluids B, Vol. 4, No. 2, February 1992

as’f— asB(0,x) — 3,B(0,x) + sf — B(0,x) = ad’f.

(12)

With the initial conditions Eq. (12) becomes
as’f+sf = adf. (13)

The solution of this equation, which is bounded at infinity, is
of the form:

f=c(s)e~ W+ &, (14)

To satisfy the initial condition at x =0, we require that
~'f(0,s) = B,. Using the fact that L ~'(1/s) = 1, we ob-
tain c(s) = 1/s.
In order to now find B(T,x), we have to find the inverse
La_ lace transform nf f. ITqmo the relation

1 1 as
as[s+ (1/a)} "’

s as[s+ (1/a)]
performing achange of a variables’ = s + 1/2s, and employ-

[, N PR e £
we obtain the solution for

A T PO P RSP o AN

H o 18
i1ig inverse Ldpldbc LransiOoriis,

B:

x<T, B = Boema{Jo( L x2)

2a

£l )
il ger)

—J,(—L(T— u))]du], x>T, B=0,
2a
(15)

where J, and J, are Bessel functions. This is the general
solution with both resistivities, the collisional resistivity and
the Hall resistivity.

Applying inverse Laplace transform to Eq. (14), it can
be shown that using the conditions (a) and (b) of Sec. II, the
solution tends to the known previous solutions as follows:

We know that x’ should scale as 7 and 7"’ — o, that means
y=x'/NT =[0(B89],

B(Tx)=L~'(H
_ 1 “tie exp{ — y\/T[sz—{—(s/a) } o™ ds
277'1 — ioo
_ 1 J‘”""’ exp[ —W(uz/T—i- u/a) ]
2mi c—iw

Letting T— «, we obtain'®
B(Tx) =L ~'(n.1) ()

I _ ot — wu/a)
=L Y(ptt=1){"——
u

= erfc( 2\/_) = erfc(z\/xT&) .

The last expression is exactly the one given in the previous
paper.'®
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In the case of an infinitely fast-rising magnetic field at
the plasma boundary, the magnetic field propagates into the

plasma initially as a nondispersive wave moving with the

plasma initially as a nondispersi moving with th
light velocity and governed by the displacement current. At
these early times, the Hall field and the collisional resistivity
do not affect the magnetic field evolution much since the
current is initially small. The finite velocity of the front pre-
vails for all times and thus the magnetic field is identically
zero for x > ct. Later, for times ¢ > B, /nec, the wave becomes
dispersive due to the Hall field and the collisional resistivity.

For x <ct, the magnetic field evolution resembles the solu-
tion of the diffusion equation, which validates the results of
our previous paper.'® Still, even for these later times, the
magnetic field amplitude has small oscillations, rather than
being monotonically decreasing in space. These small oscil-
lations diminish for 7— . Collisional resistivity damps the
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magnetic field amplitude but does not change the wave-
length of the spatial oscillations. Near the front of the wave
x<ct, the magnetic field is very different from the solution of
the diffusion equation. The wavelengths of the oscillations of
the values of the magnetic field components and of its ampli-
tude decrease when approaching the front. These wave-
lengths near the front decrease also in time.

This behavior is demonstrated in Figs. 1(a)-1(d). The
solution is plotted for various times T’ as a function of x’ in
terms of the normalized units of Sec. IT. We plot the ampli-
tude of the magnetic field and one of its components (contin-
uous lines). The collisional resistivity is zero (x = 0). The
solution of the previous paper,'® where the displacement
current is not taken into account, is aiso plotted (in dotted
lines).

The rapid oscillatory behavior near the front, for
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FIG. 1. For the semi-infinite slab, the y component of the parallel magnetic field and its amplitude | | are plotted versus normalized x’ for different normal-
ized T". The solutions that do not consider displacement current are denoted by dotted lines, while those that do are denoted by continuous lines. Here k = 0.

The times for (a)—(d) are T = 0.3, 2, 20, and 200, respectively.

378 Phys. Fluids B, Vol. 4, No. 2, February 1992

K. Gomberoff and A. Fruchtman 378

Downloaded 04 Feb 2004 to 132.77.4.129. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



T’ — 0, cannot be predicted by the scaling analysis of Sec. 11,
because it is characterized by large values of the derivatives.
It is rather obtained by an asymptotic estimate of the inverse
Laplace transform of /. We perform a steepest descent analy-
sis, which is correct for T— o0 and x ~ T and we obtain for B
the solution

(1 —a)(2a — a?)¥*

[1—-VI/Qa =) INT
Xexp(TEI-— (—14++2a~ az)),
a

where @ = 1 — x/T and C is a numerical constant.

We can see that because g is imaginary when there is
only Hall resistivity, the exponent is the source of the oscilla-
tions. The phase is varying as a function of a. Near the front,
that is for & —0, the slope of the phase with respect to « is

proportional to (1 — @)/V(2a — @?) and results in a fast-
rising phase as a function of x, of magnitude of order T— .
The last oscillation near the front has a wavelength
A =477(4a%/T). This is the reason for the diminishing
wavelength of the oscillations of the components of the mag-
netic field near the front, as observed in the figures, as well as
its diminishing as 7"’ grows. In the case of a purely collisional
resistivity, the exponent is real and gives rise to a monotoni-
cally decaying |B|. For a—1 or small x/T, but still large
enough so that the method of steepest descent is applicable,
the expression for B from the steepest descent calculation
reduces to the asymptotic form of the previous expression
without the displacement current, i.e., the asymptotic form
of B = B, erfc(x/2\ta).

In Figs. 2(a)-2(c) our solution is plotted, for a null
Hall resistivity and for a normalized # to unity (dotted line),
and for x = 0.085 (continuous line). This is done for the
same times as Figs. 1(a)-1(c). It is shown that the wave
equation solution is not modified by the collisional resistiv-
ity. It is independent of whether we have Hall resistivity or
collisional resistivity, and of their magnitudes. On the other
hand, the solution for T’ > 1 is modified and the propagation
into the plasma is drastically diminished by the collisional
resistivity. Oscillations are also diminished by the collisional
resistivity, depending on the value of «.

B=C

(16)

IV. FINITE BOUNDARIES

We suppose now that the slab is finite in the x direction,
and we put a conductor at its end (x = d). The boundary
conditions are B(T,0) =B,, B(O,x) =0, 4 ,B(T,d) =0,
drB(0,x) =0.

Then the solution for B, in terms of Fourier compo-
nents,'is

4 . T
B(Txy=B,|1 — — 2 —_
(T,x) 0[ 7r(2n+l),,gosm(( n-+1) 5 x)

X (A, 4 B Ty ] (17)

where k = (2n 4 1)7/2d, o, , are the positive frequencies
given in Eq. (8) and
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FIG. 2. For the semi-infinite slab the y component of the parallel magnetic
field and its amplitude |& | are plotted versus normalized x’, for different
normalized T’ for two cases: x = 0.08 (continuous lines), and for no Hall
resistivity with collisional resistivity normalized to one (dotted lines). The
times in (a)-(c), are T’ = 0.3, 2, and 20, respectively. For no Hall term,
there is only one component of the magnetic field, that is, |6 | = b,.
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FIG. 3. For the finite slab with normalized width d* = 240, the y component
of the parallel magnetic field and its amplitude }5 | are plotted versus nor-
malized x' for different normalized T'; (2) 200, (b) 300. In (a), the wave
has not reached the boundary, and therefore it is identical to the solution
givenin Fig. 1(d). In (b), the wave front has already reached the boundary,
and therefore it is disturbed by the wall.

A, = w, (k)/[(l)l (k) —wz(k)]>
B, =, (K)/ [0, (k) — @, (B)]-

In order to get the limiting solution for the case that does
not consider displacement current from Eq. (17), we can
either use the conditions of Sec. I, or in this case to rescale a
(a is defined in the previous section), so that T— o« and
a—0. In that case w, /@, —  and B, = 0, so that only one
frequency, w,, appears; This is the solution given in Ref. 16
as we check numerically. This solution has no oscillations.
Therefore the oscillations result from the presence of two
distinct frequencies, following the equation being second or-
derin 7.
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In Figs. 3(a) and 3(b) we present a solution for times
that the wave has not reached the walls. We see that it is
exactly the same solution as for the semi-infinite case (what
also serves as a check). This is because our solution is exactly
zero for x > T and therefore exactly zero at the walls, other-
wise it would be perturbed by the walls. In a later time, when
the wave reaches the wall, it is disturbed and the solution
differs from the semi-infinite case solution.

V. CONCLUSIONS

We added the displacement current to the model that
describes the fast propagation of magnetic field into a one-
dimensional plasma slab due to the Hall term. The governing
equation was shown to be the Telegraph equation with com-
plex coefficients rather than the diffusion equation with a
complex coefficient, as it is when the displacement current is
neglected. The propagation of the magnetic field was shown
to be governed by two different waves, the left circularly
polarized wave and the dispersive whistler wave. For a fast-
rising maguetic pulse at the boundary of the plasma, the
magnetic field evolution was studied analytically. As expect-
ed, we found out that the only prevailing effect for all later
times due to displacement current is that the propagation is
limited by the light velocity, being identically zero for x > ¢z,
This is due to the nature of the governing hyperbolic equa-
tion. There are some effects which last for a long time but
diminish as time grows, like oscillations of the absolute value
of the magnetic field, around the solutions of the diffusion
equation, and more importantly: short wavelength oscilla-
tions near the front of the pulse. This behavior results from
the time varying dominance of the two different waves. At
earlier times, the left circularly polarized wave is dominant,
and the solution does not depend on the collisional resistivity
or on the value of the Hall term. At a later time the dispersive
whistler wave is dominant.
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