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The effect of the displacement current on the magnetic field propagation into plasmas in the 
form of a whistler wave is studied. For times between the electron and the ion cyclotron 
periods and if the plasma is tenuous so that the electron plasma frequency is smaller than the 
cyclotron frequency, the magnetic field is shown to be governed by the Telegraph equation 
with complex coefficients. The propagation of a fast-rising magnetic field is examined and at 
early times the magnetic field is shown to propagate as a left-polarized wave with the light 
velocity. At a later time the magnetic field propagates as the dispersive whistler wave and is 
governed by the diffusion equation with a complex coefficient [ Fruchtman and Maron, Phys. 
Fluids B 3, 1546 ( 1991) I. As expected, the front of the wave keeps propagating with the finite 
velocity of light. The effect of collisional resistivity is also considered. 

1. INTRODUCTION 

The magnetic field propagation in magnetized plasmas 
has been studied theoretically and experimentally in the con- 
text of space plasmas as in laboratory plasmas. The propaga- 
tion of the magnetic field in processes for which the time 
scales are fast is also of wide interest and has been studied in 
laboratory plasmas, as in an afterglow plasma,’ and in some 
pulsed power devices such as the magnetically insulated ion 
diodezV3 and the plasma opening switch.4S’ The time scale in 
such cases is between the electron cyclotron period and the 
ion cyclotron period. If the plasma collisionality is small, 
then for these time scales, the magnetic field evolution is 
highly governed by the Hall field. 

In such short time scales, which are characterized by 
frequencies such that o 9 wCi, where wCi is the ion cyclotron 
frequency, the electron motion becomes more important 
than the ion motion, and the ion motion can be neglected. In 
another paper where the ion motion is included,6 we study 
the transition from field propagation to plasma pushing by 
the magnetic field, and we show that the neglect of the ion 
motion for wgwCi, is a consistent assumption. 

The electron inertia can be neglected as long as w<w,,, 
where w, is the electron cyclotron frequency. In such cases, 
the Hall term accounts for the electron motion. For WZ=W, 
more complicated models should be considered. The Hall 
term has been already vastly introduced in the context of 
different plasma behaviors7-‘4 and in particular also in the 
context of propagation of magnetic field.6”s~‘6 

In a recent paperI it is shown that when the Hall term is 
introduced into the equations, the magnetic field propaga- 
tion is enhanced in a dramatic way provided that there exists 
a strong magnetic field in the direction of propagation. In 
this case the propagation of a fast rising field is characterized 
by the whistler velocity rather than by the AlfvCn velocity. 
Also, for large enough Hall term in comparison with the 
collisional term, the process is much faster than what a pure- 
ly diffusive type process would be. The one-dimensional 
magnetic field evolution, when governed simultaneously by 

both whistler wave propagation and collisional diffusion, 
was shown to be described by a diffusion equation with a 
complex diffusion coefficient, where its real part results from 
the collisional resistivity and the imaginary part results from 
the Hall term. The displacement current has been neglected 
in this analysis. The purpose of the present paper is to exam- 
ine how the whistler-dominated magnetic field evolution is 
modified by the inclusion of the displacement current. 

Our model, as in Refs. 6 and 16, consists of a one-dimen- 
sional plasma slab with perpendicular magnetic field of in- 
tensity B, . A parallel magnetic field is switched on at time 
t = 0 on one of the slab faces, and it propagates into the 
plasma as a whistler wave, governed by the Hall term. We 
focus on the effect of the displacement current which was 
previously neglected. 

In order to be able to neglect the displacement current in 
the Hall-field-dominated evolution, we previously assumed 
that the time scales should be such that w&J$/w,,, where 
wp is the plasma frequency. In the present paper we relax this 
assumption but still restrict ourselves to time scales such 
that w,, SW. For such time scales, the electron inertia can 
still be neglected, but the displacement current has to be 
included. Such a regime exists for tenuous plasmas in which 
WC, % ape * 

We make the further assumption that the parallel fields 
are smaller than the perpendicular uniform field B,. The 
problem is thus reduced to the linear one-dimensional evolu- 
tion of the magnetic field along a background magnetic field 
in a cold uniform plasma. Under the combined effects of the 
Hall field, the collisional resistivity and the displacement 
current, the magnetic field evolution is shown to be governed 
by the Telegraph equation with complex coefficients. When 
the displacement current is neglected, the Telegraph equa- 
tion is reduced to our previous diffusion equation with a 
complex coefficient. We study the propagation into the plas- 
ma of a magnetic field that is switched on with an infinitely 
fast rise time at the plasma boundary. We derive analytical 
solutions in this case for both semi-infinite and finite plasma 
slab. 
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The propagation into the plasma of fast-rising currents, 
as well as that of the associated magnetic field, in the form of 
whistler wave propagation, has been recently observed ex- 
perimentally in an afterglow plasma. ’ Although the geome- 
try in that experiment was cylindrical rather than a slab ge- 
ometry, as it is in our model, the currents were observed to 
propagate by dispersive oscillatory whistler waves governed 
by the electron motion, similar to the description in the pres- 
ent model. The typical velocity of the propagation was in- 
deed observed to be the whistler wave velocity rather than 
the Alfven velocity. 

In Sec. II the model is presented and the governing 
equation for the parallel propagating field is derived. Also, 
typical time and space scales are calculated. In Sec. III an 
analytical solution is shown for the semi-infinite slab. The 
solution is compared to the solution that does not consider 
the displacement current, its development in time is shown 
and the role ofthe collisional resistivity is also shown. In Sec. 
IV a solution for finite boundaries at the perpendicular x 
direction is presented. Finally, a resume is given in Sec. V. 

II. THE MODEL 

We assume that the process is so fast that the ions are 
immobile and the current as a result is determined by the 
electron motion only. On the other hand, we assume that the 
process is slow enough to allow the neglect of the electron 
inertia. The characteristic time scale is therefore between the 
electron and the ion cyclotron periods. We further assume 
that the pressure gradients are small. These assumptions are 
expressed in the following form of Ohm’s law, 

E = qJ + EJxB, (1) 

where E and B are the electric and magnetic fields, J is the 
current, 17 is the collisional resistivity, E = l/n,ec and n, is 
the electron density. 

The other governing equations are Faraday’s law and 
Ampere’s law for the electric and magnetic fields, and the 
continuity equation for CT the charge density: 

(l/c)&B = - VxE, (2) 
(l/c) (d,E + 4n;i) = VxB, (3) 
d,o+V*J=O. (4) 

Equations ( 1 )-( 4) and the relation 
n, = n, - 0, (5) 

where n, is the constant-in-time ion density, comprise the 
governing equations for E, B, J, and 0. 

We consider an infinitely long plasma slab, with its nor- 
mal at the x direction. The plasma is magnetized with a uni- 
form magnetic field By?. A constant parallel magnetic field 
B, is switched on the front face of the slab (ay-z plane), at a 
time t = 0. We assume that all quantities depend only on x. 

When the displacement current is neglected, incom- 
pressibility is a property of the electron flow. When the dis- 
placement current is important, the electron flow is incom- 
pressible only if we consider the linearized one-dimensional 
case, B,, B,, <B,, on which we focus from now on. More 
exactly, B,, B, 4 B, =+E, ~0 from this follows J, = 0 and 
ni = n, = n = n, (constant and uniform, also charge neu- 

trality is valid). Then Eq. (4) is satisfied trivially. 
Defining T = ct, we obtain the equations for they and z 

components: 

-a,& = (B.N4n)(d: - at,, [eBy - (?jdB,)B,], (6) 

&By = (B,c/47d (~3: -d;)[d?, - (~/B,)B,,]. (7) 

By assuming B,,, B, of the form By+, = BOyOreikX + i(w’c)T and 
77 = 0, and by a substitution into Eqs. (6) and (7), we find 
the dispersion relation. Because the equations are of fourth 
order in T, we get two branches of positive frequencies: 

42= 1 f ~E%~c~(~IT.)~B; r,/l + 48k2c2(4r)‘B; 
C2 ~%?(4rr)~B; 

(8) 
This is the dispersion relation for the case w,, %@e$/w,,, 
for collisionless cold plasma electron waves. Generally there 
are three branches of electron waves with positive frequen- 
cies for a cold pIasma of a low density where wpe (w,, The 
whistler wave is the slower mode, and the two other modes 
are the left- and the right-polarized modes. ” In our model, 
however, which corresponds to time scales for which the 
electron inertia is neglected (w Q w,, ) the fastest mode, the 
right-polarized mode, does not appear. The presence of the 
two different frequencies here, in comparison to the previous 
work16 that had only the whistler branch as a solution, is the 
reason for the basic differences between the solutions. 

Defining B=B,, + iB,, Eqs. (6) and (7) can be rewrit- 
ten as 

GB= (B,c/4r) [ - df (q/B,) ] (a: - d+.)~. (9) 
This is the Telegraph equation for complex B with complex 
coelllcients. 

The Telegraph equation describes magnetic field propa- 
gation that is governed by a superposition of whistler waves 
and left-polarized waves. When the time scale is long, 
w<w~/w,,, the dispersive whistler wave is dominant. When 
the time scale is shorter, w,,$o>c$/w~~, the dominant 
wave is the left-polarized wave, which becomes nondisper- 
sive for w $ i$/w,, . 

The Telegraph equation is an hyperbolic equation, 
where c, the light velocity in vacuum, is the velocity of pulse 
propagation. As expected, this finite propagation velocity 
results from the inclusion of the displacement current, and 
the associated left-polarized wave, in our model. The neglect 
of the displacement current reduces the Telegraph equation 
to the parabolic diffusion equation (with a complex coeffi- 
cient ), which describes whistler wave propagation. l6 The 
Telegraph equation with real coefficients describes propa- 
gating waves in a lossy medium. The value of the parameter 
yo determines whether the wave is diffusive (7~ 4 1) or a 
nondispersive light wave (VW) 1). In our case, the Tele- 
graph equation with complex coefficients describes disper- 
sive propagating waves where the analogous parameter 
w,,w/u~ determines whether the wave is dispersive 
( w,,o/c$ & 1) or a nondispersive light wave ( w~,o/c$ 3 1) . 
The quantity w,,/wz = B,/nec is called the Hall resistivity, 
because of the analogy to rl in the Telegraph equation. 
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scahg analysis. Equation (9) can be rewritten in a di- 
mensionless form. 

Defining b= B/B,, T’~4rrT/~B,c,x’r4rrx/c~B,, the 
equation becomes 

(3,,b= [ -i+ (~/EB,)](c~E, -a$,)b. (10) 
From this equation it can be seen that we have left only one 
physical parameter, which is mainly the ratio between the 
resistivities, K = G$EB,. If now we redefine T” +3T’, and 
xM = @x’, we obtain the equation 

c&b= (-i+K)(d:,, -&)b. (11) 
We see that for p-0, the equation tends to a diffusion, or a 
Schrodinger equation, depending on the values of K. This 
diffusion equation is exactly the equation given in the case 
when the displacement current is not considered.16 

In terms of T’ and x’, we see that for P-PO and 
T’ = 0( l/p) + 03 and x’~/T’~O(P~), the equation tends 
to the equation which does not consider the displacement 
current. Finally, we see that the conditions for tending to the 
previous solutions, which do not consider the displacement 
current, in terms of the unnormalized t and x and orders of 
8, are 

(a) t/~B,~O(l/,@+ca; 
(b) x2/c2eB,tzO(fio). 

(Notice that this is the condition for the whistler waves to 
become dispersive, as mentioned before. ) 

From Eq. ( 10) we see that rescalingx’, T’ together with 
respect to a parameterp’, wherep ‘-PO, in a way that bothx’ 
and T’ have the same first-order dependence on fi ‘, then for 
small x’ and T’ both of order fl ‘-0 the equation is a wave 
equation. In terms ofx, t, the equation becomes a wave equa- 
tion when 

(cl t/eB, zO(P’); 
(d) x/ct=;O(p”). 

We remark that the wave solution should not depend on K. 

Let us emphasize that this is true in general only when it 
is satisfied that none of the derivatives of the solution is sin- 
gular and for both fl and p ’ strictly tending to zero. The 
behavior near the front, therefore, cannot be predicted by 
these scalings, and it is studied separately in the following 
section. 

In the next sections we find explicitly the solutions, and 
we will verify the conclusions of these scalings. 

111. ANALYTICAL SOLUTION FOR A SEMI-INFINITE 
SLAB 

We consider a plasma slab that is semi-infinite in the x 
direction. The magnetic field is applied at one of its faces, 
defined as x = 0. The magnetic field is applied at T = 0 and 
kept constant. The boundary conditions are then 

B(O,x) = 0, B( T,O) = B,, &B(O,x) = 0. 

We define 

a={(B,c/4r) [ - ie + (7/B,)]}. 
Then, applying a Laplace transform on Eq. (9), i.e., 
flx,s) EL [B(x,t) 1, we obtain 

a?f - asB(O,x) - &.B(O,x) + sf - B(O,x) = aZJs 
(12) 

With the initial conditions Eq. ( 12) becomes 

a.?f+sf=ad% (13) 
The solution of this equation, which is bounded at infinity, is 
of the form: 

f=c(s)e-X‘I~+(~~). (14) 
To satisfy the initial condition at x = 0, we require that 
L -‘f(O,s) =B,.UsingthefactthatL -‘(l/s) = l,weob- 
tain c(s) = l/s. 

In order to now find B( T,x), we have to find the inverse 
Laplace transform off: Using the relation 

1 1 
+ 

as -= 
S 4s + (l/a) 1 ads+ (l/a)] ’ 

performing a change of a variables’ = s + 1/2s, and employ- 
ing inverse Laplace transforms,‘* we obtain the solution for 
B: 

x < T, 

(15) 

where Jo and J, are Bessel functions. This is the general 
solution with both resistivities, the collisional resistivity and 
the Hall resistivity. 

Applying inverse Laplace transform to Eq. ( 14), it can 
be shown that using the conditions (a) and (b) of Sec. II, the 
solution tends to the known previous solutions as follows: 
We know that x’ should scale as p and T ’ -+ 00, that means 
y=x’/JFz [OCP”,], 

B(T,x) =L -‘cr) 

1 c+im =- 
s 

exd - ydT[?+ WaIlI eT$ds 
2?ri c-im S 

exp[ - yd(u’/T+ u/a)] eUdu 
l.4 

Letting T-+ 00, we obtain” 

B(T,x) =L -‘(y,tt)Cf) 

=L -‘(y,tt= l)(e(-y) 

=erfc(-$-)=erfc(&). 

The last expression is exactly the one given in the previous 
paper. ” 
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In the case of an infinitely fast-rising magnetic field at 
the plasma boundary, the magnetic field propagates into the 
plasma initially as a nondispersive wave moving with the 
light velocity and governed by the displacement current. At 
these early times, the Hall field and the collisional resistivity 
do not affect the magnetic field evolution much since the 
current is initially small. The finite velocity of the front pre- 
vails for all times and thus the magnetic field is identically 
zero forx > ct. Later, for times t > BJnec, the wave becomes 
dispersive due to the Hall field and the collisional resistivity. 
For x(ct, the magnetic field evolution resembles the solu- 
tion of the diffusion equation, which validates the results of 
our previous paper. I6 Still, even for these later times, the 
magnetic field amplitude has small oscillations, rather than 
being monotonically decreasing in space. These small oscil- 
lations diminish for I-* CO. Collisional resistivity damps the 
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magnetic field amplitude but does not change the wave- 
length of the spatial oscillations. Near the front of the wave 
x<ct, the magnetic field is very different from the solution of 
the diffusion equation. The wavelengths of the oscillations of 
the values of the magnetic field components and of its ampli- 
tude decrease when approaching the front. These wave- 
lengths near the front decrease also in time. 

This behavior is demonstrated in Figs. 1 (a)-1 (d). The 
solution is plotted for various times T’ as a function of x’ in 
terms of the normalized units of Sec. II. We plot the ampli- 
tude of the magnetic field and one of its components (contin- 
uous lines). The collisional resistivity is zero (K = 0). The 

solution of the previous paper,16 where the displacement 
current is not taken into account, is also plotted (in dotted 
lines 1. 

The rapid oscillatory behavior near the front, for 

l.OK, I ! I ( , I , , , t I t I , I I I b t I I e, 

-1.0 ’ ’ * * ’ ’ ’ ’ + ’ - t I ’ ’ + * ( - ’ ’ ’ r 
(c) O 

5 10 15 20 
X’ 

1.0 ,,I I, t,, 3  ,I k t I, b  8  I I, I L  I 

Ibl 

FIG. I. For the semi-infinite slab, they component of the parallel magnetic field and its amplitude lb 1 are plotted versus normalized x’ for different normal- 
ized T’. The solutions that do not consider displacement current are denoted by dotted lines, while those that do are denoted by continuous lines. Here K = 0. 
The times for (a)-(d) are T’ = 0.3.2.20, and 200, respectively. 
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T’ -) CO, cannot be predicted by the scaling analysis of Sec. II, 
because it is characterized by large values of the derivatives. 
It is rather obtained by an asymptotic estimate of the inverse 
Laplace transform ofJ: We perform a steepest descent analy- 
sis, which is correct for T-+ CO and xz Tand we obtain for B 
the solution 

B =c (1 -a)(2a-aa2)3’4 

[ 1 - J1/(2a - a21 IJT 
xexp T-$- ( - 1 + J2cr--a’)), (16) 

where a = 1 - x/T and C is a numerical constant. 
We can see that because a is imaginary when there is 

only Hall resistivity, the exponent is the source of the oscilla- 
tions. The phase is varying as a function of a. Near the front, 
that is for adO, the slope of the phase with respect to a is 
proportional to ( 1 - a)/dw and results in a fast- 
rising phase as a function of x, of magnitude of order T+ 00. 
The last oscillation near the front has a wavelength 
A = 42(4u*/T). This is the reason for the diminishing 
wavelength of the oscillations of the components of the mag- 
netic field near the front, as observed in the figures, as well as 
its diminishing as T’ grows. In the case of a purely collisional 
resistivity, the exponent is real and gives rise to a monotoni- 
cally decaying IB I. For a--r 1 or small x/T, but still large 
enough so that the method of steepest descent is applicable, 
the expression for B from the steepest descent calculation 
reduces to the asymptotic form of the previous expression 
without the displacement current, i.e., the asymptotic form 
of B = B,, erfc(x/2fi). 

In Figs. 2( a)-2( c) our solution is plotted, for a null 
Hall resistivity and for a normalized 11 to unity (dotted line), 
and for K = 0.085 (continuous line). This is done for the 
same times as Figs. 1 (a)-1 (c). It is shown that the wave 
equation solution is not modified by the collisional resistiv- 
ity. It is independent of whether we have Hall resistivity or 
collisional resistivity, and of their magnitudes. On the other 
hand, the solution for T’ > 1 is modified and the propagation 
into the plasma is drastically diminished by the collisional 
resistivity. Oscillations are also diminished by the collisional 
resistivity, depending on the value of K. 

IV. FINITE BOUNDARIES 

We suppose now that the slab is finite in the x direction, 
and we put a conductor at its end (x = d). The boundary 
conditions are B( T,O) = B,,, B(O,x) = 0, J,B( T,d) = 0, 
d,B( 0,x) = 0. 

Then the solution for B, in terms of Fourier compo- 
nents;is 

r(2n4+ 1) nzosin((2n + 1) $4 

x (Akei(o+)7-+ Bkeww- )I9 (17) 

where k = (2n + 1 )?r/2d, w,,* are the positive frequencies 
given in Eq. (8) and 

-1.0 ’ ’ ’ ’ ’ ’ ’ 0 * ’ I t ’ 8 ’ 1 ’ 
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X’ 
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-1.0 n 1 ’ ’ ’ ’ ’ ’ 0 ’ 0 0 4 ’ ’ I ’ ’ 1 1 ’ ’ ’ 
0 0.5 1 1.5 2 

(b) X’ 

-1.01 
0 5 10 15 20 

(c) X’ 

FIG. 2. For the semi-infinite slab they component of the parallel magnetic 
field and its amplitude 1 b 1 are plotted versus normalized x’, for different 
normalized T’ for two cases: K = 0.08 (continuous lines), and for no Hall 
resistivity with collisional resistivity normalized to one (dotted lines). The 
times in (a)-(c), are T’ = 0.3, 2, and 20, respectively. For no Hall term, 
there is only one component of the magnetic field, that is, lb 1 = b,,. 
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FIG. 3. For the finite slab with normalized widthd’ = 240, they component 
of the parallel magnetic field and its amplitude lb 1 are plotted versus nor- 
malized x’ for different normalized T’; (a) 200, (b) 300. In (a), the wave 
has not reached the boundary, and therefore it is identical to the solution 
givenin Fig. 1 (d). In (b), the wavefront hasalready reached the boundary, 
and therefore it is disturbed by the wall. 

A, =m,(kV[w,(k) -w,(k)], 
B, =~,(W[w,W --w,(k)]. 
In order to get the limiting solution for the case that does 

not consider displacement current from Eq. ( 17), we can 
either use the conditions of Sec. II, or in this case to rescale a 
(a is defined in the previous section), so that T--P CQ and 
a-0. In that case w, /p2 --+ CO and Bk = 0, so that only one 
frequency, w2, appears. This is the solution given in Ref. 16 
as we check numerically. This solution has no oscillations. 
Therefore the oscillations result from the presence of two 
distinct frequencies, following the equation being second or- 
der in T. 

In Figs. 3(a) and 3(b) we present a solution for times 
that the wave has not reached the walls. We see that it is 
exactly the same solution as for the semi-infinite case (what 
also serves as a check). This is because our solution is exactly 
zero for x > Tand therefore exactly zero at the walls, other- 
wise it would be perturbed by the walls. In a later time, when 
the wave reaches the wall, it is disturbed and the solution 
differs from the semi-infinite case solution. 

V. CONCLUSIONS 

We added the displacement current to the model tllat 
describes the fast propagation of magnetic field into a one- 
dimensional plasma slab due to the Hall term. The governing 
equation was shown to be the Telegraph equation with com- 
plex coefficients rather than the diffusion equation with a 
complex coefficient, as it is when the displacement current is 
neglected. The propagation of the magnetic held was shown 
to be governed by two different waves, the left circularly 
polarized wave and the dispersive whistler wave. For a fast- 
rising magnetic pulse at the boundary of the plasma, the 
magnetic field evolution was studied analytically. As expect- 
ed, we found out that the only prevailing effect for ah later 
times due to displacement current is that the propagation is 
limited by the light velocity, being identically zero for x > ct. 
This is due to the nature of the governing hyperbolic equa- 
tion, There are some effects which last for a long time but 
diminish as time grows, like oscillations of the absolute value 
of the magnetic fieid, around the solutions of the diffusion 
equation, and more importantly: short wavelength oscilla- 
tions near the front of the pulse. This behavior results from 
the time varying dominance of the two different waves. At 
earlier times, the left circularly polarized wave is dominant, 
and the solution does not depend on the collisional resistivity 
or on the value of the Hall term. At a later time the dispersive 
whistler wave is dominant. 
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